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We consider a stochastic process which presents an evolution of particles of 
two types on 7/a with annihilations between particles of opposite types. Initially, 
at each site of Z a, independently of the other sites, we put a particle with 
probability 2p ~< 1 and assign to it one of two types with equal chances. Each 
particle, independently from the others, waits an exponential time with mean 1, 
chooses one of its neighboring sites on the lattice Z a with equal probabilities, 
and jumps to the site chosen. If the site to which a particle attempts to move 
is occupied by another particle of the same type, the jump is suppressed; if it 
is occupied by a particle of the opposite type, then both are annihilated and 
disappear from the system. The considered process may serve as a model for the 
chemical reaction A + B ~ inert. The paper concerns an upper bound of p(t), 
the density of particles in the system at time t. We prove that p(t) < t d/nt" when 
t > t(e) for all e > 0 in the dimensions d~<4 and asymptotically p(t)< Ct -1 in 
the higher dimensions. In our proofs, we used the ideas and the technique 
developed by Bramson and Lebowitz and the tools which are customarily used 
to study a symmetric exclusion process. 

KEY WORDS: Diffusion-dominated reaction; two-particle annihilating 
exclusion; asymptotic upper bound of the density. 

1. I N T R O D U C T I O N  A N D  S U M M A R Y  

C o n s i d e r  a s t o c h a s t i c  p r o c e s s  in  w h i c h  p a r t i c l e s  of  t w o  types ,  s ay  A type  

a n d  B type ,  p a r t i c i p a t e .  T h e  pa r t i c l e s  o f  t he  s a m e  t y p e  e x e c u t e  a s y m m e t r i c  

s i m p l e  e x c l u s i o n  p r o c e s s  o n  7/d ( in  w h a t  fo l lows,  th i s  p r o c e s s  will  b e  ca l l ed  

s i m p l y  an exclusion process)  w h i c h  e v o l v e s  i n d e p e n d e n t l y  o f  t he  m o t i o n  of  

t he  p a r t i c l e s  of  t h e  o p p o s i t e  t ype  un le s s  a p a r t i c l e  j u m p s  to  a si te  w h i c h  is 
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currently occupied by a particle of the opposite type. If the latter happens, 
both particles annihilate and disappear. We call this process two-particle 
annihilating exclusion or simply annihilating exclusion. 

We construct an initial configuration by putting particles in 7/d 
according to the Bernoulli product measure with the density 2p ~< 1. Then, 
for each particle that is present in the configuration constructed, we choose 
its type to be either A or B with equal probabilities and independently 
of the type of the other particles. This procedure determines the initial 
distribution of the considered process. 

Let us define the density of A (or B) particles in the system at time t 
by 

p(t) = Pr[the site 0 is occupied by A-type particle at time t] 

= Pr[the site 0 is occupied by B-type particle at time t] 

Our concern is with an upper bound of p(t) as t ~ oo. 

T h e o r e m  1.1. (i) For every e > 0 there is T(e) < oo such that for 
t > T(e), 

p(t)<~t-a/4t ~ when d ~ 4  (1.1a) 

(ii) There is a positive constant C* which may depend on d, such 
that for sufficiently large t, 

p(t)<<,C*t -1 when d > 4  (lAb) 

In the proofs, we will substitute an exclusion process by a stirring 
process. The advantage of this substitution is that in the latter, the 
marginal motion of a particle (until its annihilation) coincides with a 
random walk. This fact made it possible to utilize for our needs the ideas 
and tools used by Bramson and Lebowitz (4~ for deriving the asymptotic 
behavior of the density for two-particle annihilating random walks. The 
latter is a process in which particles of two types execute independent 
simple random walks in 7/d and, analogously to our process, an annihila- 
tion occurs when two particles of opposite types attempt to occupy the 
same site. For this process, it is proven in ref. 4 that 

ct--d/4~Pindep(t)~ct--d/4 for d~<4 (1.2a) 

ct-l<.Pindep(t)<.Ct -1 for d>~4 (1.2b) 

when t is sufficiently large, for appropriate absolute constants c = c(d) and 
C = C(d). (In fact, the initial distribution for the process considered in ref. 4 
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is different from that considered in our paper. However, it is easy to check 
that (1.2a) and (1.2b) are true if the particles in the annihilating random 
walks are distributed initially as described in the beginning of this section.) 

It turns out that majority of tools and ideas which we borrowed 
from ref. 4 suited our process. When, however, they failed to work, the 
correlation inequality substituted favorably. (The latter inequality is also 
called the Liggett inequality. It is formulated in Lemma4.12 of ref. 7, 
Chapter VIII.) The only exception was estimating from above the 
mathematical expectation of the quantity 

[ # (A particles) - # (B particles) at time t 

in the cube in ~d of side const x x//tl (1.3) 

In the case of Bramson and Lebowitz, the estimate const • t -d/4 is derived 
rather easily (see Lemma 2.2 in ref. 4). In our case, we needed a method 
that estimates quantitively the number of particles of an exclusion process 
which are in an arbitrarily given finite region of Z d at an arbitrarily given 
time t > 0, provided the initial configuration of this exclusion process is 
known. In such a situation, it is usual to compare the positions of particles 
that interact by the exclusion rules with the positions of particles that walk 
independently (given that the initial positions of the particles are the same 
for both processes). In our previous work, ~2) we used the tools which had 
been developed in ref. 5 for the needs of this comparison (see also ref. 8, 
p. 192). The results we obtained were p(t)<~ Ct -1/8 in d =  1 and <~Ct -1/4 

in d >  1. In the present paper, we use a method which we learned from 
Andjel/1) This method utilizes integration by parts, various couplings, and 
certain basic properties of the random walk. We hope that the development 
of these method will allow us to obtain also a lower bound for p(t). 

Regarding the sharpness of the estimates in (1.1a) and (1.1b), we 
present the following heuristics. Assume that the annihilating exclusion and 
the annihilating random walks start from the same configuration. Divide 
the space into regions such that each one contains only one type of particle. 
(It may be well the case that there are few or even just one particle in each 
region. This happens if A and B particles are properly mixed.) Consider the 
particles from an arbitrary region. Recall that as a consequence of Liggett's 
inequality it is customary to believe that at time t > 0 these particles will be 
more spread out if  they interact by exclusion than if they walk independ- 
ently. Thus, particles of one type will propagate into regions of another 
type more rapidly in the annihilating exclusion than in the annihilating 
random walks. Consequently, we expect p(t) decays at least not slower 
than Pindep(t). Unfortunately, we could not give a rigorous proof along the 
lines of the above reasoning. The obstacle was that even though the pro- 
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cesses are close at time t ~ 0, their distributions may be quite different for 
t>> 0. So, though we expect p( t )<  C t  -d /4  for d~<4, the technique which we 
used did not allow us to get rid of the ~ term in (1.1a). In dimensions d >  4, 
we believe ( lAb) gives the correct exponent of the asymptotic upper 
bound. This belief is based on some partial results obtained in ref. 3. 

2. PROOF OF T H E O R E M  1.1 

2.1. A formal construction of  the process under consideration and an 
auxiliary process will be given through the concepts of graphical represen- 
tation for interacting particle systems (see ref. 6 or ref. 7, Chapter III, 
Section 6). 

To each pair of nearest neighbor sites x, y ~ Z d we assign a family of 
independent exponential mean-1/(2d) random variables Hxy(l), 16 Y_ +, and 
at the random times T x y ( l ) : = ~ = 1 H x y ( k ) ,  I~77+, we draw a double 
arrow which points to the sites x and y in the space-time diagram 
7/d• [0, oe). For  reasons which will become clear in a moment, we mark 
these arrows with A. The obtained random (directed) graph is called a 
percolation substructure. The set of all percolation substructures is denoted 
by (2 A. The o--algebra o ~A and the measure #A on ~ A  are naturally 
inherited from the distribution of the (independent) random variables 
{Hxy(l), l~7Z+, x, y e Z  d, x ~ y}. 

We will consider processes in which particles of two types participate. 
We call these types A and B. By 5f := {A; B; A wB;  0} Za we denote the set 
of all configurations of A and B particles on Z d in which two or more 
particles of the same type are prohibited at the same site of Z d. We write 
q ( x ) = A ,  B, A u B ,  or 0 if the site x~7/d is occupied by respectively 
an A particle, a B particle, both an A and a B particle, or is empty in the 
configuration q ~ •. 

Assume at time 0 a site x s 2U is occupied by an A particle. We then 
define the evolution of this particle on Z d as the function of co s t2  A as 
follows: the particle stays at a site until the time when there is an arrow in 
co emanating from this site. At this time, it jumps to the site pointed at by 
the arrow and remains there until an arrow drawn from that site appears 
in co, then the procedure is repeated. By At/~' = Aq~,(co) we denote the posi- 
tion in co ~ 12 A at time t of the particle which occupied initially the site x. 

A x For an arbitrary t / o ~ ,  we denote Aq, := Ux:~o(x)=A tl, and call %/t, t>~0, 
the stirring process with the initial configuration qo. The distribution of this 
process is determined by the measure /~A and the initial configuration. 
Observe that only A particles participate in nt]t , t >~ O. 

Next, we repeat the procedure described two paragraphs above, inde- 
pendently on the same space-time diagram, but we now mark each arrow 
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with B. Postulating that the B-type particles are moved by the B arrows, 
B x we then define another stirring process at/, :=0~:,0(x)=n q,, t~>0, in the 

same way as Aqt, t/> 0, has been defined above. Observe that these stirring 
processes are independent by the construction. 

Finally, we define the process qt, t ~> 0, by postulating that if qo e .~  is 
the initial configuration of this process, then 

r/t:= ~ ar/~w ~) ~r/~, t~>0 (2.1) 
n 0 ( x )  = A n o ( x )  = B 

By Pn0 and E,0 we denote the probability law and the expectation 
operator governing the process t/t, t i> 0, with the initial configuration t/o. 
For t/o being given, the law Pno emanates from the measure # := pa x #8 on 
the space (g?, ~ )  := (f2 A x (2 B, ~ *  x Y s )  in a natural way. 

For every t /oeq / :=  {A, B, 0} ze and every coe(2, we define the func- 
tion r = r.(tlo, (o) from 7/d to •+ in the following way: first, we mark each 
particle in */o "alive"; then we postulate that when an alive particle moves 
to a site which is currently occupied by an alive particle of the opposite 
type, then both change their marks from "alive" to "dead"; %0/o, co) is 
then defined as the death time in e) of the particle which occupied the site 
x in t/o; r ,  is not defined for x such that t/o(X) =0.  

Using the notation introduced above, we now define three new 
processes as follows: if { o E ~  is the initial configuration for these three 
processes, then we set t/o = ~o and define 

a{ , :=  ~ a~/~, 8{t := ~ ~r/~,  r  twe~, ,  tT>0 (2.2) 
n 0 ( x )  = A n 0 ( x )  = B 

7:x> t *Cx> t 

The process which we have introduced in Section 1 relates to {,, t >~ 0, 
in the following manner: starting from the same configuration, both pro- 
cesses have equal probabilities to belong to an arbitrary given subset of qr 
at an arbitrary given time t ~> 0. Indeed, it is possible to couple these two 
processes in such a way that the set of all particles of the same type in one 
process forms a permutation of the set of all particles of the analogous type 
in the other process. Since we do not distinguish between particles of the 
same type, we will conduct our calculation for the process {,, t ~> 0, which, 
from here on, will be referred to as the two-particle annihilating exclusion. 

Denote by v the measure on ~ which governs the construction of 
initial configurations as described in Section l; we then set P ( . ) : =  
5 Pc( ')  v(d~'); the expectation with respect to P is denoted by [E. 

2.2. A simplification of notations. It will almost always be the case 
that at most one particle is present at every site of Z a in the initial 
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configurations for the processes t/ and ~. In this case, we will loosely 
write q~ and r omitting the left superscript, which indicates the type of 
the particle which originated from x. 

2.3. Two more definitions. For every t/o ~ ~r t~>0, and co ~f2, we 
define the function k(. ) =  k( .; r/o, t, co) from 77 a to 77 d by the following rule: 
if r/o(y) ~ 0  and Vy(r/o, co)-~< t, then k(y) denotes the initial position of the 
annihilating companion of the particle which was initially at y; if 
ry(qo, co) > t, then k(y) := y; if qo(Y) = 0, then k(y) is not defined. 

We remark that nowhere will we be interested in the value of k(y) 
itself. Instead, the function k(.) is exploited to introduce the following 
notation, which will be frequently used in the sequel: 

)'qY if ~y(t/o, co) > t (2.3) 
qtk(Y) = /~k(y)(co) : =  ~/~k(y) if Zy(r/O, co) ~< t 

In words, r/t g(y) denotes the position at time t of the annihilating companion 
of the particle which initiated from the site y if the annihilation has 
occurred before t; if, on the contrary, this particle has not been killed by 
t, then ?It k(y) = ~Y t '  

2.4. The basic designations which will be frequently used in the proofs 
are listed below. The second argument in (ix)-(xii) may be either ~ or q. 
In the case it is 4, it usually will be omitted. 

(i) WT, r > 0 ,  and Z~, r > 0 ,  denote, respectively, a simple random 
walk in 7/starting from w and a simple random walk in 7/a starting from z. 

(ii) C, Ct, C2,..., Cl, c2,..., are absolute constants. 

(iii) tt(e), t2(e) ..... are absolute constants which may depend on e. 

(iv) R, := (~ l t )  1/2, where t~>0 stands for time and the constant 61 
will be chosen after (2.51) in accordance with f13, the latter being an 
absolute constant whose value is established in the proof of Lemma 2.13. 

(v) r, :=62t 1/4 when d < 4 ,  and :=(61t) TM when d>~4, where t~>0 
stands for time and the constant I~ 2 depends exclusively on 6~ and is also 
specified in the course of the proof of Lemma 2.13. 

(vi) If there is no explicit indication, D stands for a cube in Na 
centered at the origin; to avoid complications, we always assume that the 
boundary of D contains no integer points of Ra; IDI is then the number of 
integer points contained in the cube D; OD is the set of the integer points 
of the interior and the exterior of the cube which are at the distance ~< 1 
from the boundary of D. 

(vii) ID(t/~) := 1 i f t /~eD and :=0  otherwise. 
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(viii) DR is a cube in R e of the side R, which is defined in (iv) above. 

(ix) D~(s; .) is the number of A-type particles of the process -in the 
cube DR at time s; D~(s; .) has the analogous meaning for B-type particles. 

(x) Dr(s ;  . ) : =  D~(s; . ) +  DnR(s; .) is the total number of particles 
in D R at time s. 

(xi) D'~(s;.):=min{D~(s;.),D~(s;.)} is the number of the 
particles which are in the minority. 

(xii) [DR(s;-)[ := IDA(s; .)--DBn(s; ")l is the absolute value of the 
difference between the A- and B-type particles in D R at time s. 

2.5. Basic properties of the constructed processes which will be essen- 
tially used throughout the proofs are listed below. 

(i) For every x e Z  a, Aq~, t>~O, is a simple random walk in Z a 
starting from x; the same is true for Bq~:, t ~> 0. 

(ii) Let 22 and A be two arbitrary subsets of Z d and ~ and ff be two 
arbitrary configurations from Y" such that r  Vxe22, and 
~(x) = ~(x) = B, Vx e A. Then, for arbitrary t ~> 0 and co e f2 and each x e S 
(yeA), ~q~((~) [B~/Y(co), respectively] attains the same value for both 
qo = ~ and tt o = ~. This fact follows from the definition of q,, t ~> 0. 

(iii) Let tlo, t / ; e{A,  0} Zd be such that q;_cqo, which means that 
q•(x) = A =~ t/o(X ) = A, Vxe Z d. Then 

U U 
x :  % ( x )  = A x :  n 0 ( x )  = A 

for all t >~ 0 and all ~o e f2 A 

This property is called additivity. It can be proved using (ii) above. 

kemma 2.1. Let D be an arbitrary finite subset of 7/a. For  all s ~> 0, 
it holds that 

E~(s) := E 2 Io(t/~' ) -  ~ Io(rl] ) = 2p(0) IDI 
x :  n o ( x )  = A u: n o ( u )  = B 

2p(0) is the density of the initial measure. 

Proof. A~I. and "r/. evolve in time independently of one another, each 
one according to the rules of the (symmetric simple) exclusion process, and 
since both of them start from the measure which is invariant for this 
process (see ref. 7 for the proof that the Bernoulli product measure with a 
constant density is invariant for the symmetric simple exclusion process), 
then E~(s)= El(0) for all s ~> 0. But, due to the construction of the initial 
measure, # {xeD: t / ~ = A } - -  #{ueD: t /~=B} is equal to the sum of ID] 
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independent random variables each of which takes on the values 1 or - 1  
with probability p(0), or the value 0 with probability 1 -  2p(0). Since the 
variance of the sum of these variables is El(s) ,  then the latter is equal to 
2p(0) ]Dt. | 

kemrna  2.2. For an arbitrary D, a finite subset of 2 a, qoe ~ ,  and 
distinct x, y E 7/a such that rlo(X ) = rlo(y ) = A, it holds that 

x I " ~ ( Y ~ ] < ~ O  for all s > ~ O  (2.4) ~-,O[(ID(qs)--ID(q~(x)))(ID(tlf) - Dr'Is , ,  

Proof.  Let D be arbitrary but fixed. Let a, b, c ~ 7/a be arbitrary but 
such that a and b are not necessarily distinct, while c r a, c ~ b. Construct 
the configuration [ by setting 

~(a) =A,  ~(b) =B,  ~ ( c ) = A w B ,  ~(z)=0 V z r  (2.5) 

By Liggett's inequality (ref. 7, Lemma 4.12, Chapter VIII), for all r/> 0, 

E~[ID(Aq~) ID(ARc)] ~< E;[ID(At/~)] E~[ID(Aq;)] 
(2.6) B b  B c  Er ID( qr)] ~ E~[ID(Bqb)] ~_~[ID (Bl,]r)]c 

It follows from the construction of Section 2.1 that if the process q,, t ~> 0, 
starts from the configuration #, then for all r/>0, At/~ is independent of 
Btt~, Attr~ is independent of Bqb, and ID(ArlCr) and Io(Brl~) are identically 
distributed. Together with (2.6) this gives that 

E~[(ID(Aq;) -- ID(Brl~))(lD(Atl;) -- ID(Bqr~))] ~ 0 (2.7) 

for all r >/0 and independently of our choice of the sites a, b, and c. 
Let now qo and x, y e 7/a be arbitrarily fixed and satisfy the condition 

of the lemma. It follows from definition (2.3) that 

liD(t/~ ) k(x) y e(y) x _ --Io(r/~ ) ] = 0  ID(tl~ )][ ID(ns)  

on those realizations of the process tl,, t >~ 0, for which maX(Tx, Zy) ~> s. In 
the rest of the proof, we consider only those realizations for which 
v~ ~< Zy ~< s. The case ry ~< z~ ~< s may be treated in the same way. By the 
strong Markov property and the property (ii) of Section 2.5 for the process 
q,, t~>0, 

~,0[I{~x <. ry <. s} (ID(rl~) k(x) y --ID(rls ) ) ( I D ( q , ) - - I D ( ~ Y ) ) ) I r y ,  ~ ]  

I O when 27y > S o r  27 x > -Cy 

= I-]~-;[(I~176 ID(Br/~-- ~Y))] (2.8) 

[ otherwise 
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where 

A x B .  k ( x )  A y ~ B F i k ( ) ' )  a =  tl~y, b =  q~y , c =  tl~, ' ~ .  

and ~ is constructed by (2.5). From (2.7) we conclude that the second line 
of the right-hand side of (2.8) is ~<0 for all Vy and all t/v. Consequently, the 
left-hand side of (2.8) is ~<0 for all Zy and all q~y. Taking mathematical 
expectation validates the lemma's assertion. | 

The following lemma is crucial for the proof of Theorem 1.1. In this 
lemma, we consider two processes. The initial configuration for both is the 
same. In one process, the particles execute a stirring process. In the other, 
we exclude one particle from stirring with the others and postulate that it 
executes an independent random walk. We are interested in comparing 
V ( t ) f ( x ; v )  to U ( t ) f ( z ; v ) ,  where V(.), U(.) are the semigroups of these 
processes, f i s  a particular function of the form (2.9) below, v is the initial 
position of the excluded particle, and Z is the initial configuration of the 
rest of the particles. The comparison will be done utilizing the same techni- 
que as one uses to prove Liggett's inequality, the one to which we referred 
when proving (2.6). We remark that this inequality gives just a qualitative 
estimate, i.e., V ( t ) f ( z ;  v ) -  U( t ) f (75  v)<.0. The work of Andjel (1) drew our 
attention to the fact that, using the same technique, one can evaluate the 
above difference quantitively. 

To formulate and prove the lemma, we start with some auxiliary 
constructions. The connection of the annihilating exclusion process to these 
constructions will become clear in the course of the proof of Lemma 2.5. 

Let X =  {0, 1 } ~dx {0, 1 } be the set of all the configurations of particles 
on Z d in which (i) one particle is marked, (ii) no more than one unmarked 
particle is allowed at a site, (iii)the marked particle may occupy a site 
which contains an unmarked particle. By (Z; Y) we denote the configura- 
tion from )( in which the marked particle stays at the site y and the 
unmarked particles form the configuration Z e {0, 1 } zd. For a configuration 
)~ and two sites u, v e Z d such that )~(u)= 1, )~(v)= 0, we denote by X(u, v) 
the configuration which is obtained from )~ by moving the particle from u 
to v. 

By U(t), t >1 O, we denote the semigroup of the process on )( in which 
the unma/-ked particles evolve according to the stirring mechanism and the 
marked particle executes an independent random walk. By V(t), t >1 O, we 
denote the semigroup of the process on )7:= {(~b; y)~)( :  ~ ( y ) = 0 }  in 
which all the particles evolve according to the stirring mechanism. Let U 
and V designate the generators of these two processes. 

From here on, the symbol f will denote the function from X to 
which is defined by 



680 Belitsky 

f(z;  y ) : =  ( ~  ID(x))Io(y), (Z; y ) ~ 2  (2.9) 
x :  z ( x )  = 1 

where D is a finite subset of 7/d which will be explicitly specified every time 
we refer to this function. 

I_emma 2.3. For an arbitrary fixed h e N, let D be the cube in 7/d 
with the side 2 h + l  centered at the origin, i.e., D =  [-h,h]ac~Z a, and 
denote by H the set { - h ; - h - . 1 ; h ; h + l } .  Let (Z;v) be an arbitrary 
configuration from )7. Then, for f defined by (2.9) it holds that 

0~< [V(s) V(s)f](z;v)<~- Y', ~ Y - PEW,_r =y](P[Wr e l l ] )2  dr 
dj= 1 y 

(2.10) 

where vJ is the j th coordinate of the point v in Na and W is defined in (i) 
of Section 2.4. 

Proof. Fix arbitrary Z from {0, 1} Z~ and v~Y_ a such that Z(v)=0. 
From the integration by part formula, 

[U(s)- V(s)f](z; v)= ~J0 V ( s - r ) [ U -  V]U(r)g dr~ (x; v) (2.11) 

It is straightforward to check that for a function g: J ( ~  N and for a 
configuration (~b; y)e)~, it holds that ( x ~ y  means that these sites are 
neighbors on Z a) 

( [ u -  v] g)(~; y)= E 
x : ~ ( x ) =  l , x ~  y 

1 
-~ [g((O(x, y); y) ) -  g(r y)] 
a z  

1 
+ Y~ ~-s [g(r x ) -  g(r y)] 

x :  ~ ( x )  = 1 , x  ~ y 

l 
-- ~ ---~ [g ( (~ (x ,  y); x ) ) -  g(q~; y)] 

x :  ~ ( x )  = 1 , x  ~ y 

= F~ 2~ [g((~(x, y); y ) ) -  g(r y) 
x :  ~ ( x )  = 1 , x  ~ y 

+ g((r x)) - g((O(x, y); x))] (2.12) 

[Certainly, (2.12) may be wrong when g is not in the domains of definition 
of U and V. In what follows, however, g will be taken equal to U(r)f Since 

f is in both domains of definition of the generators U and V, then so is g 
due to the Hille-Yosida theorem. 17)] 



Two-Particle Annihilating Exclusion 681 

Let ej := (0,..., 0, 1, 0,..., 0) be the point in ~a whose j t h  coordinate 
is 1. We define a family of operators {F +, F j ,  j = 1,..., d} on the set of the 
functions from 2( to ~ by 

F+g((J; Y) := ~d Eg((~b(Y -+ e;, y); y)) - g(~b; y) + g((~b; y _+ ej)) 

- -  g ( ( ( ~ ( y  +_ ej, y); y + ej))] 

iff ~b(y+e/)= 1, and Ffg(c~; y) :=0 otherwise. Using (2.12) and the 
functions F +,  we rewrite (2.1 1 ) in the following equivalent form: 

j= l  

Our current objective is to evaluate (2.13) based on the properties of 
a simple random walk and of a stirring process. The technique which we 
will use is called coupling. To couple processes, we will use an independent 
copy of the probability space of percolation substructures (O A, Z A, PA) 
which has been defined in Section 2.1. This probability space generates the 
stirring process in the way explained in Section 2.1. Also, by (F, ~,~r,/~r) 
we will denote the probability space of the percolation substructures which 
generates the simple random walk on 7/a which starts at zero. We postulate 
that the stirring process and the random walk generated by the probability 
spaces above are independent. 

Assume m e (2, 7 ~ F, and r ~> 0. Put a configuration ~b e {0, 1 }~d at time 
0 in 09. The configuration which is obtained from ~b at time r in co will be 
designated by ~bT. Similarly, put a particle at time zero at the origin in 7. 
The position of this particle at time r in 7 will be designated by 0~. For 
y E 2~ a, we then define y~ := Or ~ + y, SO that y~, r >/0, is a trajectory of a 
simple random walk in Z a starting from y. Also, by (~b; y)~,7, we will 
designate the configuration ((0; z) ~ 27 such that ~o = ~b~ and z = Y~r. 

Denote 

-I-OlD ;= {z=(zl,..., za)E D: zl = +_h } 

- -~ lD--e  1 := { x - - e l : x E  --631 D} 

Let now (~b; y) be an arbitrarily fixed configuration from _~ such that 
~ b ( y + e l ) = l  and denote x : = y + e l .  The idea of introducing ~1D and 
- ~ 3 1 D - e l  lies in the following equivalences, which can be easily checked: 

7 e F is such that y~ s D and x~ r D 

"~ 7 ~ F i s  such that y~ ~ 01D (2.14) 
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~ F is such that y~ r D and XTr S D 

~:~ 7 ~ F i s  such that Y~r 6 - t ? l D -  el (2.15) 

For V s F, co E f~, r i> 0, and the configuration (~b; y) fixed above, consider 

f[(~b(x, y); y)~?"] - f [ (~b ;  y)~'~] + f [ ( ~ ;  x)~ '~] - f [ (q~(x ,  y); x )~" ]  

(2.16) 

Consider (2.16) for 7 such that yf and x~r either both belong to D or 
both do not belong to it. Then, for every co, the first summand cancels the 
fourth summand and the second one cancels the third one. Thus, for the 
considered fixed y, the mathematical expectation over co with respect to 
the measure #A (which we denote by E~) of (2.16) is zero. 

Assume that 7 e F satisfies (2.14). Then, for this 7 and for every co e ~,  
the last two terms of (2.16) are zeros. Furthermore, for an arbitrary co, 
consider the configurations (~b(x, y))~ and (~b)~). They differ at two sites, 
which are the position in (~b(x, Y))7 of the particle which started at the site 
y and the position in (q~)~ of the particle which started at x. Consequently, 
for y which satisfies (2.14), the mathematical expectation with respect to 
the measure #A of (2.16) equals 

E a ( f [ ( O ( x ,  y); y)~,v] - f [ (~b ;  y)r ~'?]) = E~(ID(y~ )) -- ID(X~r)) (2.17) 

But, due to (i) of Section 2.5, y~, r >~ 0, and xT, r/> 0, are two random walks 
in 7/a that start from two neighboring points x and y such that x = y + e 1. 
Thus, coupling these random walks in such a way that they use 
simultaneously the same percolation substructure from F and using (2.14) 
and (2.15), we derive that (2.17) equals (7 is a random variable from F and 
not that which has been fixed above, and by E r  we denote the mathemati- 
cal expectation with respect to the measure #r)  

ErEID(y~r) -- ID(X~)] = PEZ~ = c31D ] - PEZ~ ~ - a , D  - e l ]  (2.18) 

Also, (2.14) gives that 

# r E y E F :  Y~r ~D and XTrCD] = P E Z ~ a 8 1 0 ]  (2.19) 

From (2.18) and (2.19) we derive that the Ee  • r mathematical expectation 
of (2.16) over those 7 ~ F which satisfy (2.14) is 

y v P[Z~  e O ~ D ] ( P g Z  r e # l D ] - P [ Z ( e  - - ~ ? l D - e a ] )  

Similar reasoning gives that the E e •  mathematical expectation of 
(2.16) over those 7 e F which satisfy (2.15) is 

P [ Z ;  ~ - #~D - e~ ](P[Z~'  e -- # tD - e~ ] -- P [ Z (  ~ 6~1D]) 
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Consequently, the Ea• r mathematical expectation of (2.16) equals 

PEZYr ~ - 8~D - el ] - P [ Z ; e  8,D])2 if y + e l s c }  
(2.20) 

otherwise 

[the second line in (2.20) follows immediately from the definition of F~- ]. 
It is important to observe that, as follows from our reasoning, the Ee~ c 
mathematical expectation of (2.16) depends exclusively on the value of ~b at 
the site y +  el as specified in (2.20). Using this observation, we conclude 
from (2.20) that 

o <~ F ?  V(r) f(,k; y) ~< 2~ ( P [ z ;  E - ol D - ~ ] - P[Z~r ' ~ G D])~ (2.2!) 

independently of ~b. Now use once more the fact that the marginal motion 
of a particle in the stirring process is a simple random walk [(i) of 
Section 2.5]. Thus, from the above formula we get that 

0 ~ V(s - r) F~- U(r) f(~; v) 

1 
E P[z~,_r  = y]  

p Y 0 1 D ] )  2 x ( P [ Z Y e - 8 , D - e l ]  - [Zr 6 

1 
<~~ ~ P[W;~_,. = y ] ( P [ W ~ E H ] )  2 

y E Z  

(2.22) 

Observe that the independence of ~b in (2.21) is essentially used in deriving 
the second inequality in (2.22); the third inequality is an obvious 
consequence of the properties of random walks. 

Reasoning in the same way, one derives that for every j =  1, 2,._, d, 
V ( s - r )  F f  U(r)f(r v) is not less than 0 and not greater than the right- 
hand side of (2.22) with v 1 being changed for v j. Together with (2.13), this 
gives (2.10). | 

The following lemma estimates the integraI in (2.I0). 

k e m m a  2.4. Let H be an arbitrary finite subset of 7/ consisting of 
J H[ sites and let x be an arbitrary site in 7/. Then, 

f 2  ~ p[WX-r=Z](P[W~r6H])2  dr<~ C11H] 
z E2Z 

where C~ is an appropriate absolute constant. 

(2.23) 
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ProoL Recall that for a simple random walk in 7/a, 

sup P [ Z  x= y]  <~ C2 y'~Z a (r)d/----- 5 for all x � 9  (2.24) 

Thus, using (2.24) and the Markov property of a simple random walk, we 
have that the left-hand side of (2.23) is 

f, C~ ~Jo ~ Z p[WX-, =z] P[W;r�9 dr 
z e Z  

f] c2 <~ c~ IHI (2.25) C2 Inl 
4 (r),/2 (s) , /~ dr 

which establishes the assertion of the lemma. | 

The previous two lemmas are combined together to obtain the 
following result. 

kemma 2.5. Let R, be given by (iv) of Section 2.4 and let D = D R 
be the cube in R a with the side R, centered at the origin. For every e > 0, 
there exists t2(s) such that for all t >/t2(e) and all s �9 It/2; t] 

I x k(y) y ] a~ (2.26) ~- ~ ID(q,)(ID(q~ )--ID(~/,)) <~ C s R t t  
x ,  y z x ~ t -  y 

r i o ( x )  = , I o ( y )  - A 

where Cs is an appropriate absolute constant. 

ProoL Let y be an arbitrary site of Z d and qo �9 ~ be an arbitrary 
configuration such that t/0(y ) = A. The strong Markov property and the 
definition of k(-) give that 

i~(~)(I~(~, ) - I ~ ( , 7 ~ ) )  ,~, 
x : x ~  y 

nO(X)  = / i  

Io(rl, ~)(ID( rls ,) A v 
= x : x ~ v  

r  

0, otherwise 

(2.27) 

where in order to avoid complicated indexes, we denoted ~ =~y, ~= ~/~, 
and v = r/y = n k~y) According to the constructions which precede zy  ~ ~y " 

Lemma 2.3, the upper line of the right-hand side of (2.27) equals 

([U(s - z) - V(s - z)] f ) (z ;  v) (2.28) 
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with f being defined by (2.9) for D = DR and X being the set of all sites of 
Zd\{v} which are occupied by A-type particles in (. 

Due to Lemmas 2.3 and 2.4, the expression (2.28) is less than C3 := 
C1 [HI =4C1 for all s>>.O, ry<~S, and (X; v) ~)(. Having this fact in mind 
and taking the mathematical expectation of both sides of (2.27) gives 

E 
x : x C y  

rio(x) = A 

3 
I x k ( y )  y [ ~,(,Ts)([D(~s ) -  I~,(~,)) _1 

C 3 (2.29) 

for all r/oeYr s>~0, and y such that t/o(y)=A. From (2.29) we conclude 
that 

~ F_[ ~ IDOl~)(Io(~l~(Y))--ID(~lYs)) ] 
[]Y[I ~< Rt t~ x: x ~ y 

q 0 ( x )  = r i o ( y )  ~ A 

C 3 ( R  t i f ) d ,  VS e [t/2, t] (2.30) 

where llx][ ~< C if and only if the point x belongs to the cube with the side 
C centered at the origin. 

Consider now an A particle in an arbitrary configuration qo. Let y 
denote the site which it occupies. Observe that the marginal motions of this 
particle and its annihilating companion after the time of their annihilation 
are simple random walks which start from the same point. Thus, 

E [ ta . .k(y)  ~ a y rl.c(),) D t  r  ~ z ( y ) + r ) '  Vr~>0 

where r(y) is substituted for zy to avoid complicated indexes. Using the 
above relation and the strong Markov property for the process r/,, t ~> 0, 
one easily finds that 

E,7ot.mtr tB.~(y)~,l. , I{ry ~< s })~< E,olv(Aq y) (2.31) 

Now, using (2.31), we can write 

E 
IlYll /> Rtt  ~ 

~<[DI 

y , x : x ~  y 
~o(x) = ,to(y) = A 

Z F-[Io(rl~Y~)I{Zy<s}g{qo(y)=A}] 
IIYll ~> Rtt  ~ 

2 E[ID(qY)] 
[lY]] /> Rtt ~ 

[O[ (2.32) 
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The central limit theorem gives that for every e > 0 there is tl(~) such that 

P [ Z ~  = y]  <~ C4 exp ( - c 3  r~) (2.33) 
x :  I Ix  Yll /> r l / 2 + ~  

for all y e~_ a and all r >  t~(e). Recall that D is the cube with the side 
R , =  (6~t) 1/2 centered at the origin. Thus, from (2.33) and the property (i) 
of Section 2.5, we conclude that the last expression in (2.32) is 

~< (]D[)2 C4 exp[_c3( t /2 ) , ]  <~ (61t)d C4 exp[_c3( t /2 ) , ]  ~< 1 (2.34) 

for all s e  It/2, t] when t is larger than an appropriate t2(e). Combining the 
inequalities (2.32)-(2.34) with (2.30), we obtain the lemma's assertion. I 

I . e m m a  2.6. For every e > 0  there exists t2(~) such that for all 

t >1 t2(e), 
<" ['~ l~d/2ta for all s ~ It~2, t] 

where C 6 is an absolute constant. 

Proof. Fix t and let D be the cube with the side Rt. Let rio ~ ~r be 
arbitrary and fixed. It follows from the construction of Section 2.1 that 

x :  q 0 ( x )  = A u: r i 0 (u )  = B 

= ~ (ID(q:~)--ID(rffs)I{rx<~S}) 
x :  n o ( x )  = A 

- ~, (ID(~l~)--Io(rl~s)I{%<,s}) (2.35) 
u: n o ( u )  = B 

for all s/> 0. From here on until the end of the proof of this lemma, we will 
x x s I x write q~ for Io(qs) and i x for o (~ ) ,  respectively. From (2.35) one easily 

derives the following relationship: 

x : q o ( x ) = A  u : r i o ( u ) = B  s j  

= Z Z .: 
x :  frO(X) = A u: riO(U) = B 

+ Z tT : I { , y<~s} -  Z 17:I{%<~s} 
Y:  riO(Y) = A v: riO(V) = B 

x :  riO(X) = A u: riO(U) = B 

x (  Z v/:/{% ~<s}-  ~ r/:I{v, ~< s})  (2.36) 
v: ~ 0 ( v )  = B Y: ri0(Y} = A 
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Since any annihilation involves two particles of opposite types, then, using 
the notation (2.3), we rewrite the second summand in the right-hand side 
of (2.36) as 

Y r/s ) ( r / , - , ,  ~,+ Y (r/; '~Y~ - r / s  ) (2.37) 
y :  r i o (Y )  = A x :  riO(X) = A y :  riO(Y) = A 

x ~ y  

and the third summand of the right-hand side of (2.36) as 

2 Z Z r/~,(r/ks(Y)- r/Ys) + 2 ~ r/f(r/ks~Y)- r/~) 
Y:  riO(Y) = A x :  riO(X) = A Y:  r iO(Y) = A 

x , A  y 

+ 2 ~ Z r/f(r/ks(Y3 - r/s y) + 2 Z r/,Y(r/f(Y)- r/sY ) (2.38) 
Y:  riO(Y) = B x :  riO(X) = B y :  r i o (Y )  = B 

x ~ y  

Let us now make two observations. 

(i) Due to the symmetry between A and B particles, the mathemati- 
cal expectation N: of the double sum of the first line in (2.38) equals that of 
the double sum of the second line in (2.38). 

(ii) Due to the definition of the process r/~, t/> 0, and Section 2.3, we 
have that r/~ and r/~(Y) are identically distributed for all s >~ 0. Consequently, 
for an arbitrary given r/0 and y such that t/o(y ) = A we have 

- -  +4~ri0r/str/s --  r/ s ) -- -- ~- rio ( r/ , --  r/ ~ ) 

From the above observations and from (2.36)-(2.38) we derive that 

x : r i 0  = A  u : r l O ( u ) = B  s _  

= ~ Z r / : -  r/~ 
x :  riO(X ) = A u: riO(u) = B 

(r/,-r/s )(r/ _r/~x~) 
Y: r i0(Y)  = A x :  ~/0(x)  = A 

x ~ y  

( , ) 
Y:  r io (Y )  = A 

y :  r io(v) .  = A x :  r i o ( x ) = A  
x ~ y  

822/73/3-4-15  
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Consider the right-hand side of (2.39). The first mathematical expectation 
equals 2p(0)R, a due to Lemma 2.1, the second one is not positive due to 
Lemma 2.2, and the last one is less than CsRa, t ~ due to Lemma 2.5 for s 
and t which satisfy the conditions of this lemma. Consequently, the left- 
hand side of (2.39) is bounded from above by 5CsRatt ~ when s~ [t/2, t] 
and t is larger than t2(e). Applying the Jensen inequality ~l(.)l~< 
{E[(-)2]} 1/2 and recalling the definition of ]~R(')] given in (xii) of 
Section 2.4, we obtain the lemma's assertion. | 

R e m a r k  2.7. In what follows, we will usually refer the reader to 
Bramson and Lebowitz (BL). ~4) Thus, when we say that "a part of a proof 
coincides with a certain part in BL," we mean that the reader should refer 
to the indicated part of BL, remembering ~/, and (, are here defined by (2.1) 
and (2.2). We recall that (,, t >~ 0, in BL denotes two-particle annihilating 
random walks, and ~/,, t>~ 0, stands for the process in which the particles 
which are present in ~/o execute independent random walks without interac- 
tions. Except for ~/t and (,, all other designations have the same meaning 
here and in BL, though the values of the absolute constants denoted by the 
same notation may differ. 

Def ini t ion 2.8. We define 

ha(T) := rain [Pr{a rate-2 random walk on 2U 
Ilxl] ~< T 

starting at x hits 0 before time T 2 } ] 

where the norm I1" IL has been defined after (2.30). 
The following asymptotics has been established in Lemma 4.1, BL: 

ha(T)>~ cl, d=  1 

/> el/lOg T, d =  2 (2.40) 

>.I cl T 2-a, d>~ 3 

as T--, ~ ,  where cl > 0 is an absolute constant depending on d. 

l . e m m a  2.9 (Counterpart of Lemma4.2, BL). Let R, be given 
by (iv) of Section 2.4. Assume that r has translation-invariant initial 
distribution; then 

E [ ~ ( s ) ]  - ~ [ ~ ( s  + R,~)] I> ha(R,) ~ [ ~ ( s ) ]  

for all s when t is large enough. 

Proof. As noticed in (i) of Section 2.5, A~/7 and ~F/y, t~>0, are two 
random walks. By the construction, they are independent. Set qo := r 
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Then, for every pair x, y e 7/a such that qo(X)= A, qo(Y)= B, the difference 
q ~ -  ~/(, t >/0, is a rate-2 random walk in Z a. Having in mind this fact, one 
easily sees that the argument used to prove Lemma 4.2 in BL suits the two- 
particle annihilation exclusion. This establishes the lemma. The value of t 
for which the lemma holds is determined by the asymptotics (2.40). II 

From here on, r and R stand, respectively for r t and R,, the latter 
being determined in (iv) and (v) of Section 2.4. 

For r<R,  we consider the set of nonintersecting cubes Dr.j, jEJ,  of 
the side r which form a partition of D R, i.e., Uj~sD,.j=DR. We denote 
q := (r/R) d. The symbols ~ ,  ~ ,  and ~ are defined as in (ix) and (xi) 
in Section 2.4 for the cube Dr. 

I . e mm a  2.10 (Counterpart of Corollary 1 after Lemma 4.4, BL). 
Let R = R t be given by (iv) of Section 2.4. Suppose that ~ : [ ~ ( 0 ;  q)] >~ LI,  
where LI >~ c2/q for appropriate c2 > 0 (not depending on R or r). There is 
an absolute constant fi~ > 0 such that 

E[~r~.j(s; q)] i> fll qLJ8 (2.41) 

for all j e J  and all s e  [R2/2, R 2] when t is large enough. 

Proof. The central limit theorem guarantees the existence of two 
absolute constants fl~>fl~ > 0  such that fll/Ra<~ P r { Z ~ =  y} <~fl/R a for all 
x, y ~ DR and all s ~ [R2/2, R 2] when t is sufficiently large. Thus, using the 
property (i) of Section 2.5, we have that 

~lq<<,E[Iz~r(q~)]<<,flq<l forall  xeDR,  s~[R2/2, R 2] (2.42) 

where Dr is an arbitrary cube from the partition of DR. 
Let now k I> l >  0 be two arbitrary integers and x~ ..... x k be a set of k 

distinct sites in D R . Then 

l k 

UA'77-=UA ?, vt>10 
i ~ l  i = 1  

A xi due to (iii) of Section2.5. Thus, Y~tg=~ID~ ( r/, ) is stochastically smaller 
than ~ : 1 1  ,A ~, oft q, ), so that for the considered x~ ..... xk and l<~k, the 
following is valid: 

Pr A ~, IDa( qs  ) ~ f l l q l / 2  
i 1 

~<Pr ID~(~q~')<~-~ E ID~(Aq~ ') 
i 1 i 1 
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{• ,1 h x i  ~<Pr IDr(At/~)--E I19r( t/~ 
,=  t 1 i 1 

A x i  

i 1 

{' I• ,1 ~< Pr ~ a ~, A x~ IDa( t / s ) - E  Ivy( I1S 
. =  i = 1  r 1 

1 t 

Var(Etl 1 a ** = &,(~,))  
~< 1E z .4 x, 2 

( 2  I-Ei=I/D,(ns)]) 
Z ~ = I  Var a ~, i,,~(t/s) 

<~ ~(fl,ql)2 

I maxa, < ~ <~ qfl(1 - qfl) 
l(fl,ql)2 (2.43) 

The first and the last inequality are substantiated by (2.42), and in the last 
but one inequality, we used the negative correlation of 

A x t I o , ( t / s ) ,  i = 1  ..... k 

(see ref. 7, Lemma 4.12, Chapter VIII). 
Observe that as a consequence of (iii) of Section 2.5, a cube Dr may 

contain at time s some additional particles except for those which were 
present initially in the cube DR. Thus one concludes from (2.43) that there 
is an absolute constant fl = fl(fl~,/~) > 0 such that for all s ~ [R2/2, R 2] and 
k >.>l>O, 

P [ ~ ( s ; t / ) < . . ~ f l ~ q l l ~ ( O ; t / ) = k > j l ] < . . ( l q f i )  -~ (2.44) 

independent of the initial positions of the A-type particles in the cube DR. 
Further, since At/. and Bt/. evolve independently, then (2.44) yields that 

P[~A(s;  t/) ~> �89 NrB(S; ~/) >~ �89 ~ ( 0 ;  ~) = k ~> I] i> [1 - (/qfl)-~] 2 

Recall that fl depends exclusively on fl and i l l ;  therefore, there is an 
absolute constant c2 > 0 such that 

l>~c2/(2q)~P[Y~(s; t / )>~�89 (2.45) 
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Denote by F the distribution of the random variable 9~(0; t/) and 
assume that E [ ~ ( 0 ;  t/)] = L~ >~ c2/q. In the following calculation, (2.45) is 
used to validate the last but one inequality: 

(, 
EE~7(s; r/)] i> J~> 

c2/(2q) 

'J l~>-c2/(2q) fi l qI 2 

~-~[ C2 

E[~7(s; 7)I ~ (0 ;  ~) = l] F(dl) 

- -  P [~7(s; ~/) ~> ~ -~ ~(O;q)---,]F(dl) 

P[~(0 ; t l )<2q] ]  >'/~qL1 I "  8 

Remark 2.11. Assume q,, t~>0, stads for the process in which the 
particles which are present in t/o execute independent random walks. The 
proof of Lemma 2.10 applies for this process also. Compared to the original 
proof (Lemma 4.3 through Corollary 1 in BL) designed for this process, 
our reasoning is based on the same ideas, though we avoid the use of the 
generating function and the consequent large-deviation estimate. 

Lemma 2.12 (Counterpart of Lemma 4.5, BL). Suppose that ~o is 
translation invariant with ~[@~(0)] ~> L1, where Lx ~> c2/q for appropriate 
c2 > 0. Then, for sufficiently large t, either 

~[~,my(s; ~) ] >1 fll qL1/16 

for all s6 [R2/2, R 2] and a l l jEJ ,  or 

~ [~ r (0 ) ]  - ~z[~(R2)l  >>" fll L1/16 

Proof.  This lemma is proven absolutely analogously to its counter- 
part. The proof stems from the estimate (2.41) provided by Lemma 2.10 
and the fact that ~o = r/0 ~ it ~ t/t Vt ~> 0, as follows from the constructions 
(2.1) and (2.2). The values of the absolute constants c 2 and fll above have 
been specified in the course of the proof of Lemma 2.10. | 

k e m m a  2.13 (Counterpart of Lemma 4.6, BL). Let R -  R, be given 
by (iv) of Section 2.4. Suppose that ~o is translation invariant with 
E [ ~ ( 0 ) ]  >/L1, where L1 >~ q / q  for appropriate c2. Then for appropriate 
f13 (not depending on 61, 62) and large enough t, 

Proof.  The proof of this lemma is based on Lemmas 2.9 and 2.12 and 
the particular choice of R t and r t given in Definition 2.4. The proof is 
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identical to that of Lemma 4.6, BL. /33 above depends exclusively on the 
absolute constants introduced until now. | 

The Proof  of  Theorem 1.1. We emphasize that the following 
proof does not contain new ideas compared to the original argument used 
in BL to obtain an upper bound for the density of the two-particle 
annihilating random walks. However, we include this proof since it makes 
the paper self-contained and easier to understand. 

Fix 0 < e < 1/8. Let t3 be large enough so that Lemma 2.13 holds and 
larger than t2(e) for the dimensions d~<4 and t2(1/8) in the dimensions 
d >  4; where t2 is from Lemma 2.6. Assume that 

for some t >  t3 it holds that p( t )>  g(t) (2.46) 

where 

~Ct2~t d/4 for d ~ 4  (2.47) 
g ( t ) = ~ C t - I  for d > 4  

and C = C(d) is an absolute constant whose value will be specified below 
in the proof. 

Since the density is nonincreasing in time, the above assumption yields 
that for all s <~ t, 

~C7t2~t d/4 for d~<4 (2.48) 
~-[~,,(s)]>~-[~..(t)]=2R--(t)>~CTta/2~ ~ a'~ - 1 for d > 4  

Due to Lemma 2.6, 

E[[~R(s)I ] ~< C6Ra,/zt ~= C6(61t) a/4 t ~ for all s E [t/2, t] 

Comparing this to (2.48), we conclude that 

E[I@R(s)[ ] ~< (~[-~(s) ] ) /3 ,  Vs~ It~2, t] (2.49) 

Observe that from the definitions of ~ ( . ) ,  ~ ( . ) ,  and I~R(')I, it 
follows that 

~-[~(s)]=2F-[~"~(s)]+~-[[@R(s) l]  for all s>~0 (2.50) 

From (2.49) and (2.50) we derive that 

~ [ ~ ( s ) ]  < 3P f [~ ( s ) ]  for all s ~ [ t / 2 ; t ]  (2.51) 

Choose 61 in (iv) of Section 2.4 such that it would possible to insert 24//33 
intervals of the length R, 2 in the interval It/2; t]. Let t/2 = So, sl ..... sk_ 1, 
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sk = t be the endpoints of these intervals. Using (2.48), it is easy to see that 
the assumption (2.46) yields E[~r ( t /2 ) ]  > 24e2q -1 =24c2RJrj a when the 
constant C is chosen in an appropriate way, depending exclusively on the 
absolute constants introduced until now. Because of the last inequality, we 
now can state that 

there is n such that F[~(Sn) ] ~< E[~(t /2)]/24 (2.52) 

In fact, assuming (2.52) is wrong, we then would be able to conclude, 
based on Lemma 2,13, that 

k - - 1  

E [ ~ ( t / 2 ) ]  -- EE@~(t)] = ~ (E[@~(s;) ]  -- EE@~(s,+ , ) ] )  > E[@ ~(t /2) ]  
i = 0  

which is impossible. Using (2.51), (2.52), and the fact that E [ ~ ( - ) ]  is 
nonincreasing in time, we conclude that 

EE~Rr(t)] ~< EE@#(s,)] < 3 E [ ~ ( s n ) ]  ~< EE~r(t/2)]/8 

In other words, p(t)/p(t/2)< 1/8. Observe now that when ~ is sufficiently 
small, g(t)/g(t/2)> 1/4 holds for all t > 0. Thus, the conclusion is that the 
assumption (2.46) yields the following relationship: 

p(t/2) > 2 p(t) 
g(t/2) g(t) 

A consequence from this conclusion is that, for any t > ts, there is a point 
in the sequence t, 2t, 4t,... at which the ratio p(.)/g(.) drops beneath 1. 
Assume to is such that p(to)/g(to) < 1. Now, if t = 2to satisfies the assump- 
tion (2.46), then, applying the same argument, one has 

/)(to) > 2 p(2t~ > 2 
g(to) g(2to) 

which is impossible. Therefore, p(2nto)/g(2"to)< 1 for all n e N. But for 
each s e  [2"to; 2 "+ 1to], we have that p(s) <<. p(2"to), while 4g(s) > g(2nto). 
Thus, p(t)/g(t)< 4 for all t i> to. Recalling the definition of g(t) gives the 
assertion of the theorem. | 

Remark 2.14. In the proof of Theorem 1.1, we used the fact that 
the assumption (2.46) implied E[I~R(s)[J<<,(E[@~(s)])/3 for se [t/2, t] 
when t is sufficiently large. This implication will be true also if we choose 

g~(t)=t2~t -a/4 for d > 4  (2.53) 
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This fact may give an impression that the true upper bound should behave 
as ~ ( t  -el~4) also when d>4.  This impression is incorrect, however. The 
reason is that for the needs of the proof, we must guarantee that 
~[Nr(t/2)] > 24c2/q for all sufficiently large t. Recall that q = (Rt/r,) a. The 
last inequality is therefore valid provided p(t/2)> 12c2rta=c4t-1; thus, 
under the choice (2.53) and the assumption (2.46), the whole proof breaks 
down. Also observe that we cannot take rt larger than O(t TM) because for 
the needs of the proof of Lemma 2.13 we have to maintain R~/ra,-= const 
[see (4.31) in the proof of the counterpart of this lemma in BL]. 
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